

INNO-VEG webinar

Use of sensors to assess field vegetable and potato crops

GoToWebinar attendee information

Thank you for joining the webinar

Agenda

- Introduction to the INNO-VEG project
- Use of different types of sensors
- Calculation of vegetation indices
- Comparability of vegetation indices calculated by different sensor types
- Conclusions

Lizzie Sagoo, ADAS

Gies Van Den Daele, Inagro

Hans Moggre, Delphy

Jean-Pierre Cohan, Arvalis

Lizzie Sagoo, ADAS

Introduction to the INNO-VEG project

@InnoVeg #INNOVEG

Lizzie Sagoo, ADAS

INNO-VEG – Increasing the speed & uptake of innovation in the field vegetable & potato sectors

- To increase the speed and uptake of innovation in the field vegetable and potato sectors
- Evaluate the suitability of using crop sensing data to carry out measurements in field experiments
- Define a new approach for delivering research in the field vegetable and potato sectors

Crop types

- Alliums (leeks/onions)
- Brassicas (cauliflower/sprouts)
- Leafy salads (lettuce/spinach)
- Vining peas
- Root vegetables (carrots)
- Cucurbits (courgettes)
- Potatoes

Experimental work

- 2019 47 small plot field experiments in UK, FR, BE & NL
 - Range of crops
 - Use crop sensors to measure reflectance
 - Calculate range of vegetation indices & correlate to crop yield

2020 – 14 field scale experiments

- Treatments applied to larger areas
- Data collected using drone mounted sensors
- Use spatial statistics to analyse data

Interreg 2 Seas Merez

Use of different types of sensors

Gies Van Den Daele, Inagro

Sensor types

Spectral resolution

- Multispectral
- Hyperspectral
- RGB
- Thermal

• • • •

Lightsource

- Active
- Passive

Sensor types

According to platform

- Handheld sensors
- Tractor mounted sensors
- Drone mounted sensors
- Satellite images

11

Handheld sensors

These sensors are operated manually in the field

+

- To be used in different experimental designs
- Well suited to collecting data from small plot experiments
- Possibility of taking multi- or hyperspectral measurements
- Easy transport and use in the different fields
- Labour-intensive measurements
- Difficult in large plot field experiments (limited field of view)

FieldSpec HandHeld 2 (Adas)

- Hand held spectroradiometer
- used by ADAS in their small plot experiments in 2019

0.60

0.50

0.40

0.30

0.20

0.10

0.00

400

500

600

Wavelgenth (nm)

700

800

900

Reflectance

- Hyperspectral wavelength range 325-1075 nm
- Records reflectance values every 1nm
- Passive sensor calibrate in field using a white reference disc

Tractor mounted sensors

- Mounted on tractors, spray booms and specially developed carrier systems
- ÷,
- Faster data collection compared to manual measurements
- Possibility to have the data collection runs semi-automatically
- Hyperspectral or multispectral measurements
- Multi-sensor platform:
 - "heavy" and new sensors like lidar, thermal cameras...
- Tramlines need to be provided
- Plots are limited in dimensions

ALPHI® - Arvalis (France)

- Specially developed carrier system
- Hyperspectral

Description

Sensor boom Towed or worn One driver Max crop height max 1.3 m

Experimental design

Parallel walkways of seedlings Seedlings recorded at GPS RTK Max 800 µplots ACQ: 400 µplot/J

Spectracam (Delphy)

- Sensor designed to be tractor mounted
- Deplhy developed a special carrier to use the sensor on field trails
- RTK-gps system
- Multispectral 5 bands:
 - 550, 670, 700, 730 and 780 nm
- Active lightsource

Drone mounted sensors

- Mostly multispectral sensors
- Passive sensors

- Faster data collection
- Also possible for large plot field experiments
- Easy transport to the different fields
- Trained drone pilots are needed
- Restrictions in drone legislation

÷

MicaSense Red Edge 3

- Drone mounted
- used by ADAS in 2020 field scale experiments
- Multispectral 5 bands
 - 475, 560, 668, 717, 840nm

MicaSense RedEdge MX + Blue (Inagro)

- Drone mounted (DJI M200)
- Blue is an expansion kit that provides 5 extra bands
- Multispectral 10 bands
 - 444, 475, 531, 560, 650,

668, 705, 717, 740, 842nm

DJI P4 Multispectral (Arvalis)

- RTK drone
- Multispectral 5 bands + RGB
 - 450, 560, 650, 730, 840nm

Calculation of vegetation indices

Hans Moggre, Delphy

Introduction

Hans Moggré

- Consultant in Arable Farming for Delphy
- South West of the Netherlands

Specialisation in Precision Farming

What do we measure with the sensors?

INNO-VEG

5/11/2020

23

Interreg 2 Seas Mers Zeeën

Vegetation Indices (VI)

- VI is a single number using the reflectance at two or more bands.
- Many different VI

Name	Centre wavelength nm
Green	550
Red	670
Red-	700
edge	700
	730
NIR	780

Vegetation Indices in INNO-VEG

- NDVI Normalised Difference Vegetation Index
- MCARI2 Modified Chlorophyll Absorption Ratio Index 2
- Cl Green
 Chlorophyll Index Green
- CI Red-Edge
 Chlorophyll Index Red-Edge
- NDRE Normalised Difference Red-Edge
- REIP Red-Edge Inflection Point
- MTCI MERIS Terrestrial Chlorophyll Index

NDVI - Normalised Difference Vegetation Index

Advantage:

- Very standard index
- Most used in the World
- Robust index
- Less sensitive to different sensors

Disadvantage:

Saturation at a high biomass (LAI)

$$NDVI = \frac{NIR - Red}{NIR + Red}$$

REIP and **NDRE**

Advantage:

- Less sensitive for saturation
- Sensitive for amount of Chlorophyll
- Can say something about N-uptake and N-content

Disadvantage:

Sensitive for sensor specification

$$REIP = 700 + 40 \frac{\left[\frac{(670nm + 780nm)}{2}\right] - 700nm}{740nm - 700nm}$$

$$NDRE = \frac{790 - 720}{790 + 720}$$

MTCI

 $MTCI = \frac{753 \ nm \ -708 \ nm}{708 nm \ -681 \ nm}$

Advantage:

 Can say something about Nuptake and N-content

Disadvantage:

Sensitive to sensor specifications

CI Green

Advantage:

More linearly correlated to N content

$$CI Green = \frac{NIR}{Green} - 1$$

Disadvantage:

Sensitive for trial location (soil colour)

CI Red-Edge

Advantage:

Simplicity

$$CI red-edge = \frac{NIR}{rededge} - 1$$

Indicator of total chlorophyll in the canopy

Disadvantage:

- Sensitive for trial location (soil colour)
- Sensitive for sensor specifications

MCARI2

Advantage:

- Less sensitive to different sensors
- Less sensitive to trial location (soil colour)
- Less saturated for high biomass

$$MCARI2 = 1.5\left(\frac{2.5 - (NIR - Red) - 1.3 * (NIR - Green)}{\sqrt{(2 * NIR + 1)^2} - (6 * NIR - 5\sqrt{Red}) - 0.5}\right)$$

Disadvantage:

Sensitive to light intensity and calibrations

	NDVI	MTCI	MCARI2	REIP	NDRE	CI Green	CI Red-Edge
Measuring at one farm	Х	X	X	X	X	X	X
Leaf area	х					Х	
Chlorophyll content		х	x				X
N content				Х	Х	Х	
More farms, same sensor	Х	Х	!	Х	X	1	!
 Leaf area 	х						
Chlorophyll content		х					
N content				Х	Х		
More farms, different sensors	Х	!	!	1	!	!	1

Framework conditions for innovation

Questions

gies.vandendaele@inagro.be h.moggre@delphy.nl

Comparability of vegetation indices calculated by different sensor types

Jean-Pierre Cohan (<u>jp.cohan@arvalis.fr</u>) Antoine Fournier (<u>a.fournier@arvalis.fr</u>) ARVALIS-Institut du végétal Ruth Wade (<u>Ruth.Wade@adas.co.uk</u>) Lizzie Sagoo (<u>Lizzie.Sagoo@adas.co.uk</u>)

ADAS

Presentation structure

- The sensor simulator
- The principles of the comparisons
- The relative sensitivity of the VI to the sensor characteristics
- Risk of errors when mixing data from different sensors
- Conclusion : the compromise between the agronomic accuracy and the sensor robustness of a VI

The sensor simulator

The principles of the sensor simulator :

Use of two hyperspectral datasets acquired by two partners on 3 species (potato, carrots and vining peas)

5/11/2020

Used to <u>simulate multispectral bands</u> according to each sensor spec. defined by Β.

Central wavelength position

Punctual

Gated

Interreg I 2 Seas Mers Zeeën

INNO-VEG

Gaussian

C. Compute simulated vegetation index as if acquired by different sensors

The sensor simulator

Optical sensors provide bands of specific spectral sensitivity ...

ALPHI and FIELDSCAN Full Spectra

... and Vegetation indices values are impacted by those specifications

The principle of comparisons

Measur on t	• Tool • Sent • Calc way	ls used : FieldSpec or A sor used : Spectroradic culation of the referen elength, band width c	ALPHI ometer with full spectra refle ces : Canonical VI (exact cen of 4 nm, gaussian filter)	ectance tral
	2 French trials	Sensor simulator	 Creation of each virtual Calculation of VI for each (with its own spec : cent band width, filtering met) 	sensor h virtual sensor ral wavelength, thod)
	on potato 2 UK trials on carrot		Statistical comparisons vs the references	Basic Pearson correlationsRelative standard error
	2 UK trials on vining pea		5/11/2020 Interreg 2 Sea	s Mers Zeeën 38

The relative sensitivity of the VI to the sensor characteristics

The VI which use the Red-Edge band may be more sensitive to the sensor characteristics (central wavelength, band width...)

- MTCI
- CI-REDEDGE
- REIP

...

Interreg 2 Seas Mers Zeeën INNO-VEG

which The VI use only the green, red NIR bands are and to likely be less sensitive the to sensor characteristics (central wavelength, band width...)

> NDVI CI-GREEN MCARI2 ...

The relative sensitivity of the VI to the sensor characteristics

Example of NVDI correlations between sensors

2 Seas Mers Zeeën

INNO-VEG

Income Space, Reported Service

Correlations are generally very high for a less sensitive VI like NDVI => no need to go deeper in the comparisons

Weaker

correlations could be seen for a more sensitive VI like MTCI => need to go deeper bv estimating the relative error the compared to reference

Example of MTCI correlations between sensors

	MTCI.CAN	MTCLALD	MTCI.DJI	MTCI.MICAR	MTCI.MICAB	MTCI.SP	MTCI.SP2	
0.75 - 0.50 - 0.25 - 0.00 -		Corr: 0.990***	Corr: 0.749***	Corr: 0.940***	Corr: 0.994***	Corr: 0.931***	Corr: 0.814***	MTCLCAN
4.0 3.5 3.0	1		Corr: 0.836***	Corr: 0.979***	Corr: 0.971***	Corr: 0.874***	Corr: 0.885***	MTCLALD
0.80 0.75 0.70 0.65 0.60 0.55	St.	-54-		Corr: 0.927***	Corr: 0.687***	Corr: 0.485***	Corr: 0.982***	MTCLDJI
2.50 2.25 2.00 1.75 1.50	- AR	1	A.		Corr: 0.905***	Corr: 0.761***	Corr: 0.955***	MTCLMICAR
5.0 4.5 4.0 3.5	/		and the second second			Corr: 0.961***	Corr: 0.756***	MTCIMICAB
6.5 6.0 5.5 4.5	F.	P.	15	1	, she		Corr: 0.565***	MTCI.SP
0.7	À.	-	1	1	-	مخرکور		MTCI.SP2

Source : Trial UK-CA-2

Risk of errors when mixing data from different sensors

- 112 comparisons vs the reference have been made
- 9 % of the situations are above the 10 % error limit
- 23 % of the situations are above the 5 % error limit
- MTCI seems to be the most sensitive VI to the sensor specificities
- Some work need to be done to go deeper in the interpretation of some very high error risk
- The impact of the error must also be considered regarding the agronomic interpretation of the VI Interreg 2 Seas Mers Zeeën INNO-VEG

Conclusion : the compromise between the agronomic accuracy and the sensor robustness of a VI

In some cases, a robust VI like NDVI will be enough to address the targeted trait

64.9

67.8

60.1

		Example UK trial on	of a 2019 vining pea
	1 st flight (9 June)	2 nd flight (25 June)	
	84.6	67.7	
RI2	82.3	75.1	
en	83.5	69.3	
ledge	84.2	68.9	

 All vegetation indices showed a high correlation with vining pea yield

• Correlations were greatest at full flower (9th June).

In some cases, we could need to use a more accurate VI to discriminate treatments, but more sensitive to the sensor specificities Example of a 2019 FR trial on potato

Purpose of the project: finding the best sensor variables to assess the targeted traits (yield, N status...) considering their sensor robustness to be able to use them in large field trials network

80.2

85.8

84.3

NDV MCA Clgre

MTCI

NDRE

REIP

5/11/2020

Lizzie Sagoo, ADAS

Conclusions

- Vegetation Indices can be used as an indicator of crop yields/performance
- Wide range of VIs available look beyond just NDVI
- Timing (crop growth stage) of measurements is important
- INNO-VEG project will provide information on VI's and measurement timing from experimental work in 2019 and 2020

5/11/2020

Framework conditions for innovation

Questions

jp.cohan@arvalis.fr

Lizzie.Sagoo@adas.co.uk

INNO-VEG Cross border innovation network

- Build links between the technology industry, research organizations & field veg/potato sectors
- Focus on realizing the value of crop sensing technology in the research process
- Join for free at <u>www.inno-veg.org</u>
- Members can add a profile to the Members Directory & add information on relevant services or projects

Framework conditions for innovation

Thanks for joining!

Follow the project at

www.inno-veg.org

